111 research outputs found

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    Improving Speech Interaction in Vehicles Using Context-Aware Information through A SCXML Framework

    Get PDF
    Speech Technologies can provide important benefits for the development of more usable and safe in-vehicle human-machine interactive systems (HMIs). However mainly due robustness issues, the use of spoken interaction can entail important distractions to the driver. In this challenging scenario, while speech technologies are evolving, further research is necessary to explore how they can be complemented with both other modalities (multimodality) and information from the increasing number of available sensors (context-awareness). The perceived quality of speech technologies can significantly be increased by implementing such policies, which simply try to make the best use of all the available resources; and the in vehicle scenario is an excellent test-bed for this kind of initiatives. In this contribution we propose an event-based HMI design framework which combines context modelling and multimodal interaction using a W3C XML language known as SCXML. SCXML provides a general process control mechanism that is being considered by W3C to improve both voice interaction (VoiceXML) and multimodal interaction (MMI). In our approach we try to anticipate and extend these initiatives presenting a flexible SCXML-based approach for the design of a wide range of multimodal context-aware HMI in-vehicle interfaces. The proposed framework for HMI design and specification has been implemented in an automotive OSGi service platform, and it is being used and tested in the Spanish research project MARTA for the development of several in-vehicle interactive applications

    Rational design of a genetic finite state machine: Combining biology, engineering, and mathematics for bio-computer research

    Full text link
    [EN] The recent success of biological engineering is due to a tremendous amount of research effort and the increasing number of market opportunities. Indeed, this has been partially possible due to the contribution of advanced mathematical tools and the application of engineering principles in genetic-circuit development. In this work, we use a rationally designed genetic circuit to show how models can support research and motivate students to apply mathematics in their future careers. A genetic four-state machine is analyzed using three frameworks: Deterministic and stochastic modeling through di erential and master equations, and a spatial approach via a cellular automaton. Each theoretical framework sheds light on the problem in a complementary way. It helps in understanding basic concepts of modeling and engineering, such as noise, robustness, and reaction¿di usion systems. The designed automaton could be part of a more complex system of modules conforming future bio-computers and it is a paradigmatic example of how models can assist teachers in multidisciplinary education.D.F. was supported by an internal grant from Palacky University Olomouc (no. IGA_PrF_2020_028) and J.A.C. by MEC, grant number MTM2016-75963-P.Fuente, D.; Garibo I Orts, Ó.; Conejero, JA.; Urchueguía Schölzel, JF. (2020). Rational design of a genetic finite state machine: Combining biology, engineering, and mathematics for bio-computer research. Mathematics. 8(8):1-20. https://doi.org/10.3390/math8081362S12088Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11(5), 367-379. doi:10.1038/nrg2775Jullesson, D., David, F., Pfleger, B., & Nielsen, J. (2015). Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology Advances, 33(7), 1395-1402. doi:10.1016/j.biotechadv.2015.02.011Bereza-Malcolm, L. T., Mann, G., & Franks, A. E. (2014). Environmental Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology Approach. ACS Synthetic Biology, 4(5), 535-546. doi:10.1021/sb500286rKatz, L., Chen, Y. Y., Gonzalez, R., Peterson, T. C., Zhao, H., & Baltz, R. H. (2018). Synthetic biology advances and applications in the biotechnology industry: a perspective. Journal of Industrial Microbiology and Biotechnology, 45(7), 449-461. doi:10.1007/s10295-018-2056-yMatheson, S. (2017). Engineering a Biological Revolution. Cell, 168(3), 329-332. doi:10.1016/j.cell.2017.01.001Clarke, L., & Kitney, R. (2020). Developing synthetic biology for industrial biotechnology applications. Biochemical Society Transactions, 48(1), 113-122. doi:10.1042/bst20190349Huynh, L., & Tagkopoulos, I. (2014). Optimal Part and Module Selection for Synthetic Gene Circuit Design Automation. ACS Synthetic Biology, 3(8), 556-564. doi:10.1021/sb400139hMcDaniel, R., & Weiss, R. (2005). Advances in synthetic biology: on the path from prototypes to applications. Current Opinion in Biotechnology, 16(4), 476-483. doi:10.1016/j.copbio.2005.07.002Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2(1). doi:10.1038/msb4100073Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15(2), 221-231. doi:10.1016/s0955-0674(03)00017-6Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3), 601-644. doi:10.1103/revmodphys.55.601Gardner, M. (1970). Mathematical Games. Scientific American, 223(4), 120-123. doi:10.1038/scientificamerican1070-120Bybee, R. W. (2010). What Is STEM Education? Science, 329(5995), 996-996. doi:10.1126/science.1194998Swaid, S. I. (2015). Bringing Computational Thinking to STEM Education. Procedia Manufacturing, 3, 3657-3662. doi:10.1016/j.promfg.2015.07.761Dai, T., & Cromley, J. G. (2014). Changes in implicit theories of ability in biology and dropout from STEM majors: A latent growth curve approach. Contemporary Educational Psychology, 39(3), 233-247. doi:10.1016/j.cedpsych.2014.06.003Willaert, S. S. ., de Graaf, R., & Minderhoud, S. (1998). Collaborative engineering: A case study of Concurrent Engineering in a wider context. Journal of Engineering and Technology Management, 15(1), 87-109. doi:10.1016/s0923-4748(97)00026-xMachado, D., Costa, R. S., Rocha, M., Ferreira, E. C., Tidor, B., & Rocha, I. (2011). Modeling formalisms in Systems Biology. AMB Express, 1(1), 45. doi:10.1186/2191-0855-1-45Rojo Robas, V., Madariaga, J. M., & Villarroel, J. D. (2020). Secondary Education Students’ Beliefs about Mathematics and Their Repercussions on Motivation. Mathematics, 8(3), 368. doi:10.3390/math8030368Schlitt, T., & Brazma, A. (2007). Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8(S6). doi:10.1186/1471-2105-8-s6-s9Karlebach, G., & Shamir, R. (2008). Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology, 9(10), 770-780. doi:10.1038/nrm2503Casini, A., Storch, M., Baldwin, G. S., & Ellis, T. (2015). Bricks and blueprints: methods and standards for DNA assembly. Nature Reviews Molecular Cell Biology, 16(9), 568-576. doi:10.1038/nrm4014Appleton, E., Madsen, C., Roehner, N., & Densmore, D. (2017). Design Automation in Synthetic Biology. Cold Spring Harbor Perspectives in Biology, 9(4), a023978. doi:10.1101/cshperspect.a023978Selberg, J., Gomez, M., & Rolandi, M. (2018). The Potential for Convergence between Synthetic Biology and Bioelectronics. Cell Systems, 7(3), 231-244. doi:10.1016/j.cels.2018.08.007Britton, N. F., Bulai, I. M., Saussure, S., Holst, N., & Venturino, E. (2019). Can aphids be controlled by fungus? A mathematical model. Applied Mathematics and Nonlinear Sciences, 4(1), 79-92. doi:10.2478/amns.2019.1.00009Rojas, C., & Belmonte-Beitia, J. (2018). Optimal control problems for differential equations applied to tumor growth: state of the art. Applied Mathematics and Nonlinear Sciences, 3(2), 375-402. doi:10.21042/amns.2018.2.00029Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77(2), 026601. doi:10.1088/0034-4885/77/2/026601Székely, T., & Burrage, K. (2014). Stochastic simulation in systems biology. Computational and Structural Biotechnology Journal, 12(20-21), 14-25. doi:10.1016/j.csbj.2014.10.003Bessonov, N., Bocharov, G., Meyerhans, A., Popov, V., & Volpert, V. (2020). Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains. Mathematics, 8(1), 117. doi:10.3390/math8010117Mealy, G. H. (1955). A method for synthesizing sequential circuits. The Bell System Technical Journal, 34(5), 1045-1079. doi:10.1002/j.1538-7305.1955.tb03788.xMarchisio, M. A. (2014). Parts & Pools: A Framework for Modular Design of Synthetic Gene Circuits. Frontiers in Bioengineering and Biotechnology, 2. doi:10.3389/fbioe.2014.00042Stefan, M. I., & Le Novère, N. (2013). Cooperative Binding. PLoS Computational Biology, 9(6), e1003106. doi:10.1371/journal.pcbi.1003106Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic Gene Expression in a Single Cell. Science, 297(5584), 1183-1186. doi:10.1126/science.1070919Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340-2361. doi:10.1021/j100540a008Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22(4), 403-434. doi:10.1016/0021-9991(76)90041-3Gillespie, D. T. (2007). Stochastic Simulation of Chemical Kinetics. Annual Review of Physical Chemistry, 58(1), 35-55. doi:10.1146/annurev.physchem.58.032806.104637Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based Simulation Platforms: Review and Development Recommendations. SIMULATION, 82(9), 609-623. doi:10.1177/0037549706073695TURING, A. (1990). The chemical basis of morphogenesis. Bulletin of Mathematical Biology, 52(1-2), 153-197. doi:10.1016/s0092-8240(05)80008-4Henkel, J., Wolf, W., & Chakradhar, S. (s. f.). On-chip networks: a scalable, communication-centric embedded system design paradigm. 17th International Conference on VLSI Design. Proceedings. doi:10.1109/icvd.2004.126103

    Light distribution and spectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors

    Full text link
    [EN] Light, being the fundamental energy source to sustain life on Earth, is the external factor with the strongest impact on photosynthetic microorganisms. Moreover, when considering biotechnological applications such as the production of energy carriers and commodities in photobioreactors, light supply within the reactor volume is one of the main limiting factors for an efficient system. Thus, the prediction of light availability and its spectral distribution is of fundamental importance for the productivity of photo-biological processes. The light field model here presented is able to predict the intensity and spectral distribution of light throughout the reactor volume. The input data for the algorithm are chlorophyll-specific absorption and scattering spectra at different irradiance values for a given organism, the depth of the photobioreactor, the cell-density and also the intensity and emission spectrum of the light source. Although in the form exposed here the model is optimized for photosynthetic microorganism cultures inside flat-type photobioreactors, the theoretical framework is easily extensible to other geometries. Our calculation scheme has been applied to model the light field inside Synechocystis sp. PCC 6803 wild-type and Olive antenna mutant cultures at different cell-density concentrations exposed to LED lamps of different colours, delivering results with reasonable accuracy, despite the data uncertainties. To achieve this, Synechocystis experimental attenuation profiles for different light sources were estimated by means of the Beer- Lambert law, whereby the corresponding downward irradiance attenuation coefficients were obtained through inherent optical properties at any wavelength within the photosynthetically active radiation band. In summary, the model is a general tool to predict light availability inside photosynthetic microorganism cultures and to optimize light supply, in respect to both intensity and spectral distribution, in technological applications. This knowledge is crucial for industrialscale optimisation of light distribution within photobioreactors and a fundamental parameter for unravelling the nature of many photosynthetic processes.This project has received funding from the European Union's Seventh Programme for Research, Technological Development and Demonstration under grant agreement No 308518 CyanoFactory, to Javier Urchueguia's and Matthias Rogner's respective research groups and from the grant Contratos Predoctorales FPI 2013 of the Universitat Politecnica de Valencia to the first one. We would also like to thank David Lea-Smith and Dariusz Stramski for their fruitful and selfless contribution. We kindly acknowledge the experimental support of Saori Fuse for the cultivation of cyanobacteria.Fuente-Herraiz, D.; Keller, J.; Conejero, JA.; Roegner, M.; Rexroth, S.; Urchueguía Schölzel, JF. (2017). Light distribution and spectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors. Algal Research. 23:166-177. https://doi.org/10.1016/j.algal.2017.01.004S1661772

    Radiological assessment of peri-implant bone loss: a 12-month retrospective study

    Get PDF
    Introduction: Following dental implant loading, marginal bone loss after one year must be evaluated to check correct maintenance of the bone levels. Objectives: To assess implant treatment success and quantify marginal bone loss 6 and 12 months after loading. Material and method: Sixty-one MIS® implants with a 1.8 mm machined neck were placed in 26 patients. Implant success was based on the criteria of Buser. Radiological controls were made 6 and 12 months after loading, measuring bone loss mesial and distal. Results: Twenty-two patients with 56 implants were included: 32 in the maxilla and 24 in the mandible. Two implants failed in two patients during the osseointegration phase (both in the maxilla), yielding an implant success rate of 96.4%. After 6 months, bone loss was 0.80±1.04 mm mesial and 0.73±1.08 mm distal, while after 12 months bone loss was 0.92±1.02 mesial and 0.87±1.01 distal. Conclusions: Bone loss 6 and 12 months after machined neck implant placement was within the normal ranges described in the literature

    Potential Impact of Mepolizumab in Stepping Down Anti-Osteporotic Treatment in Corticosteroid-Dependent Asthma

    Get PDF
    Oral corticosteroids (OCS) are commonly used for the acute management of severe asthma exacerbations or as maintenance therapy; however, chronic use is associated with significant toxicities, e.g., osteoporosis. In the REal worlD Effectiveness and Safety (REDES) study of mepolizumab in a multicentric Spanish cohort of asthma patients, mepolizumab effectively reduced clinically severe asthma exacerbations and decreased OCS dependence. This post-hoc analysis further evaluates mepolizumab's de-escalation effect on OCS dose. Patients enrolled in REDES who had OCS consumption data available for 12 months pre- and post-mepolizumab treatment were included in this analysis. Primary outcomes were to determine the change in the proportion of patients eligible for anti-osteoporotic treatment due to the changes in OCS consumption before and after 1 year of mepolizumab treatment. All analyses are descriptive. Approximately one-third (98/318; 30.8%) of patients in REDES were on maintenance OCS at the time of mepolizumab treatment initiation. In REDES, mean cumulative OCS exposure decreased by 54.3% after 1 year of treatment. The proportion of patients on high-dose OCS (≥7.5 mg/day) fell from 57.1% at baseline to 28.9% after 12 months of mepolizumab treatment. Thus, 53.6% of OCS-dependent asthma patients treated with mepolizumab would cease to be candidates for anti-osteoporotic treatment according to guidelines thresholds

    Structure and uncoating of immature adenovirus

    Get PDF
    Maturation via proteolytical processing is a common trait in the viral world, and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins, but ends with proteolytically processed versions in the mature virion; and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytical processing are not infectious. We present the 3D structure of immature adenovirus particles, as represented by the thermosensitive mutant Ad2 ts1 grown under nonpermissive conditions, and compare it with the mature capsid. Our 3DEM maps at subnanometer resolution indicate that adenovirus maturation does not involve large scale conformational changes in the capsid. Difference maps reveal the location of unprocessed peptides pIIIa and pVI and help to define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged.This work was supported by grants from the Ministerio de Ciencia e Innovación of Spain (BFU2007-60228 to C.S.M. and BIO2007-67150-C03-03 to R.M.), the Comunidad Autónoma de Madrid and Consejo Superior de Investigaciones Científicas (CCG08-CSIC/SAL-3442 to C.S.M.) and the National Institutes of Health (5R01CA111569 to D.T.C., R0141599 to W.F.M. and GM037705 to S.J.F.). R.M.-C. is a recipient of a PFIS fellowship from the Instituto de Salud Carlos III of Spain. A.J.P.-B. holds a CSIC JAE-Doc postdoctoral position, partially funded by the European Social FundPeer reviewe

    Von Hippel-Lindau protein is required for optimal alveolar macrophage terminal differentiation, self-renewal, and function

    Get PDF
    The rapid transit from hypoxia to normoxia in the lung that follows the first breath in newborn mice coincides with alveolar macrophage (AM) differentiation. However, whether sensing of oxygen affects AM maturation and function has not been previously explored. We have generated mice whose AMs show a deficient ability to sense oxygen after birth by deleting Vhl, a negative regulator of HIF transcription factors, in the CD11c compartment (CD11c Delta Vhl mice). VHL-deficient AMs show an immature-like phenotype and an impaired self-renewal capacity in vivo that persists upon culture ex vivo. VHL-deficient phenotype is intrinsic in AMs derived from monocyte precursors in mixed bone marrow chimeras. Moreover, unlike control Vhl(fl/fl), AMs from CD11c Delta Vhl mice do not reverse pulmonary alveolar proteinosis when transplanted into Csf2rb(-/)(-) mice, demonstrating that VHL contributes to AM-mediated surfactant clearance. Thus, our results suggest that optimal AM terminal differentiation, self-renewal, and homeostatic function requires their intact oxygen-sensing capacity
    corecore